統計検定1級の試験範囲と過去の記事・お役立ちサイト・参考書をまとめてみた【統計検定1級対策】

統計検定1級の試験範囲とそれぞれの分野に対応した当ブログの記事をまとめました。さらに勉強の上で役に立ったサイトや使っている参考書も全てまとめています。受験される方の参考になれば幸いです。

過去7年分の実際の出題範囲は通覧しやすいようにこちらで簡単にまとめました。

2014-2021年の統計検定1級の出題範囲をまとめてみた(統計数理+医薬生物学)

2021年は初めて受験したので感想もこちらに書きました。

2021年の統計検定1級(統計数理・統計応用/医薬生物学)を受けてきた

解答例を製作中です。

2021年統計数理の解答例 問1

2021年統計数理の解答例 問3

2021年統計数理の解答例 問4

2021年統計応用(医薬生物学)の解答例 問1

2021年統計応用(医薬生物学)の解答例 問2

2021年統計応用(医薬生物学)の解答例 問4

あとは参考書としてよく用いられる『現代数理統計学の基礎』で解いた問題の解答解説まとめページを作りました。こちらからどうぞ。

『現代数理統計学の基礎』 解答・解説まとめ – 脳内ライブラリアン

(2022.09.18最終更新)

目次:

 統計検定1級・統計数理の範囲一覧 

f:id:medibook:20200809164313j:plain

(『統計検定1級対応 統計学』より。ネットでもみれます。)

統計数理の各出題範囲の概要と当ブログでの過去記事

続いて、各分野ごとの統計検定における過去問の傾向と当ブログでの記事を一緒に載せます。

①確率と確率変数

統計検定1級の過去問を見る限り、前半の問題で出ることが多いです。いずれの小項目も出題頻度は非常に高いので、すぐに使えるように何度も復習しておく必要がありそうです。

モーメント母関数も過去の統計検定で出題は多く、②と合わせてそれぞれの確率分布ですぐに導出できたほうが良いと思われます。

マルコフの不等式~チェビシェフの不等式~大数の弱法則を復習

統計数理で使うマクローリン展開・テイラー展開を再確認してみた

Σ(和の記号)を使いこなせるようになろう①

Σ(和の記号)を使いこなせるようになろう②

相関係数とその導出<共分散・ピアソン・スピアマン・ケンドール>

変数変換・平方変換・確率積分変換

確率変数の和と比(和の分布・畳み込み・比の分布の変数変換)

平均まわりのk次モーメント

凸関数とJensenの不等式

②種々の確率分布

各種分布の密度関数の式やモーメント母関数の問題は頻出です。公式参考書である『統計学 統計検定1級対応』に出てくるような分布は全て押さえておいたほうがよさそうです。『現代数理統計学の基礎』でも大体カバーされています。

正規分布やカイ二乗分布、t分布、F分布は仮説検定にも大いに関連してきます。それぞれの関係性も良く学んでおくと、今後の項目で役に立ちます。

ガンマ関数とベータ関数の関係性を整理

標準正規分布とカイ2乗分布・ガンマ分布の関係について、整理と証明

標本平均と不偏分散、カイ2乗分布の関係性を整理

t分布とstudentのt検定、不偏分散との関連を整理する

ワイブル分布の期待値と分散

F分布とF検定の関連について整理する

超幾何分布でおさえておきたいポイントとフィッシャーの直接確率検定

代表的な確率分布を覚えやすいようにまとめてみる①-離散型-

代表的な確率分布を覚えやすいようにまとめてみる②-連続型・標本分布-

③統計的推測(推定)

点推定のあたりの話はこの分野に入ります。ここも問題が作りやすいので、出やすいです。特に不偏推定量や最尤法なんかは良く出題されてますね。

順序統計量とその確率についてイメージしてみる

カルバックライブラー情報量〜赤池情報量規準(AIC)までの概略をわかりやすく①

カルバック-ライブラー情報量〜赤池情報量規準(AIC)までの概略をわかりやすく②

カルバック-ライブラー情報量〜赤池情報量規準(AIC)までの概略をわかりやすく③

カルバック-ライブラー情報量〜赤池情報量規準(AIC)までの概略をわかりやすく④

スコア関数~フィッシャー情報量~クラメール・ラオの下限を復習

不偏分散の期待値と分散

④統計的推測(検定)

①~③ほどの頻度ではありませんが、統計検定の過去問では大問一つ丸ごと出たりもしています。「医薬生物学」などの応用分野では重要なテーマなので、いずれにしてもしっかり学んでおく必要があります。概念がイメージしづらいので参考書のみでなく、色んなサイトの図を参考にしながら勉強したほうが良い気がします。

仮説検定とp値の定義式

単純仮説/複合仮説の場合における有意水準αの仮説検定(例題付き)

第1種過誤・第2種過誤・検出力の関係をグラフで見る

尤度比検定、ワルド検定、スコア検定をできるだけ分かりやすくまとめる

一様最強力検定とネイマン-ピアソンの補題

1標本のt検定と対応のある2標本のt検定の式をできるだけわかりやすく見直してみる

不偏検定とその証明についてできるだけわかりやすく

⑤データ解析

ここだけ内容がバラバラすぎて勉強しにくいですね。今までの応用分野というイメージが強いです。回帰分析や分割表は今までの統計検定1級の過去問でも出てます。ベイズ法は今まで(少なくとも2014~2017年は)出ていないと思います。しかし大問一つ出た時に、さすがにすべては落とせないので、基本事項までは抑えておきたいところです。

行列が苦手すぎる人向けの重回帰分析における最小二乗法

周辺確率関数・条件付き確率関数・条件付き期待値・条件付き分散・全分散の公式

統計応用・医薬生物学

統計応用については医薬生物学を選びます。個人的に重要と思った事項をまとめておきます。

・生存時間解析

ハザード関数と生存関数の関係性を整理

カプラン・マイヤー推定値とネルソン・アーレン推定値

カプラン・マイヤー推定値の信頼区間・Greenwoodの公式

Cox比例ハザードモデルと尤度関数

RMST法の期待値と分散

・ノンパラメトリック法

ノンパラメトリック法・符号検定

ノンパラメトリック法・ウィルコクソンの符号付き順位検定

・パラメトリック法

95%信頼区間と2標本両側t検定

・ロジスティック回帰分析

ロジスティック回帰分析の数式とAIC・カルバックライブラー推定量

・試験デザイン

Simonの2段階デザインについてわかりやすく

・メタアナリシス

メタアナリシスにおける母数モデルの統計数理と代表的な推定量

制限付き最尤推定量(REML; restricted maximum likelihood)の導出

メタアナリシスにおける変量モデルの統計数理と代表的な推定量-分散の導出

お役立ちサイト紹介

参考書での独学のみだと理解するにはかなり難しいときがあるので、ネット上で分かりやすい記事を探して参考にしてます。個人的によく使ったサイトを紹介してみます。他にお勧めサイトあったら是非教えていただきたいです。

統計WEB - 統計学、調べる、学べる、BellCurve(ベルカーブ)

勉強始めた頃によく見ていたサイトです。統計学における基本事項から丁寧に学ぶことができます。図やグラフも使ってくれたり理解を助けてくれるのがありがたい点です。統計検定2級くらいまでの内容であれば、このサイトからある程度勉強できるようです。ただ、1級となると細かい数式が不足していたり足りない部分があるので、序盤で使うことをお勧めします。

高校数学の美しい物語 | 定期試験から数学オリンピックまで800記事

テーラー展開だとかガウス関数とか、行列のクラメールの公式とか、、、統計検定1級になってくると数学の基本事項で困ることが結構多いので、そういうときに記事がめちゃくちゃ役に立ちます。数式も比較的簡易で分かりやすいです。

アタリマエ!|当たり前だけどアタリマエじゃない事を、アタリマエにする

統計に関連した数学用語を分かりやすく解説していただいているサイトです。こちらも式が簡単で見やすく、初めて知る事項をまず確認するのに役立ちます。

有意に無意味な話 | 統計、データマイニング、最適化など世の中の95%以上の人は関心を持たなさそうな話を書いてます

個人のブログです。統計検定1級合格までの記録や出題傾向など。参考になります。

バナナでもわかる話

こちらも個人ブログです。なんと文系でありながら独学で合格している様子(!)。うらやましい限りです。統計検定1級過去問の解説と良く問われる内容の対策記事が書いてあります。あんまり過去問の解説もいいサイトがなかったのでくじけそうでしたが、このブログを読んで、過去問の勉強をすることで初めて1級を目指そうと思えました。

Hello! Statisticians! – あつまれ統計の森

最近もどんどん更新されている統計検定対策を考慮されたサイトです。数式もきっちり書いていただきながら、ポイントを抑えてちょっと深堀りした内容を書いてくださっているので、統計数理の検定対策にはうってつけです。

ICR臨床研究入門

臨床研究のe-learningサイトです。検定1級の統計数理というよりは、統計応用で役立ちます。専門家の講座が見切れないほど大量に載っておりユーザー登録で無料で使えます。医学関係+統計の勉強をしたい、という方にはものすごくお勧めします。

講義ビデオ – 京都大学OCW

京都大学が無料公開している臨床統計家のための講義ビデオも上のサイトと同様に医学者向けのものであるため、医師で統計を学びたい人には役立ちます。

https://img.atwikiimg.com/www43.atwiki.jp/actuary-seminar/attach/13/11/sufficientstatistic.pdf

講義の資料かと思いますが、十分統計量について非常にわかりやすく解説されており、これをみて十分統計量については勉強しました。

使ってみた参考書

色んなブログやサイトでお勧めされていたものを買いあさってます。使ってみた感想と難易度を合わせて書いていきます。

<統計数理>

『統計検定1級・準1級公式問題集』

『統計学 統計検定1級対応』



まずは公式問題集と教本から。
問題集は2年ごとに内容が載っています。解説はそこまで充実しているとは言えませんが、、、(笑)。 教本はコンパクトに出題範囲がまとめられていますが、コンパクト過ぎて初学者には向きません。後から見直すには向いてます。統計検定の内容確認のためには買った方が良いかなというところです。

難易度★★☆

久保川達也著『現代数理統計学の基礎』


超オススメです。 対策系のブログなどでも紹介されており買いましたが、ベースは全てこの1冊でやっています。後半の重回帰分析などの話になってくるとちょっと記載も少ないので不十分ですが、出題範囲の①~④までは十分に使っていけます。練習問題も豊富にあり、解答も用意されているため、力もつくこと間違いなしです。

比較的式もきちんと説明してある方なようですが、それでも初学者にはかなり難しい部分が多いので理解できない部分は補助的に他の本を買いながら勉強するスタイルを推奨します。

難易度★★★

竹村彰通著『現代数理統計学』


『現代数理統計学の基礎』で分からない部分の補助で使いましたが、分からないときにこれをみても結局分からないことも多く、せっかく買いましたがそこまで使ってません。説明の分かりやすさは同等ぐらいというところでしょうか。

難易度★★☆

小西貞則著『多変量解析入門ー線形から非線形へ』


重回帰分析の理解が『現代数理統計学の基礎』ではうまくできなかったのでこちらを購入しました。式も結構書いてあるうえ、説明文やグラフ、具体例も多いので、分かりやすいです。カバー範囲は広くロジスティック回帰分析から延々と広がっていくので、実はまださほど読んでいません。 統計検定の数理分野であれば、重回帰分析のところは役に立つので、まずそれだけのために買っても良い気はします。

難易度★★☆

石村貞夫ら著『入門はじめての統計的推定と最尤法』


統計推定と最尤法の話は、普段医学分野で使う仮説検定ともまたちょっと違う分野なので、『現代数理統計学の基礎』を読んでも理解がしにくく、これを買いました。最尤法の意味を理解しつつ簡単な練習問題もあるので、やりやすいです。初学者でも使いやすいので、そこまでしっかりは読み込みませんでしたが、理解には役立ちます。

難易度★☆☆

栗原伸一著『入門統計学 -検定から多変量解析・実験計画法まで-』


確率分布の話から仮説検定、分散分析、判別分析まで幅広くカバーしています。特に分散分析のあたりは、初心者に分かりやすい本があまり見つからなかったので、役立ちました。数式も解説してくれていますが、文章が主体なので、説明が多くて分かりやすいです。数理統計としてガチになればなるほど、数式の割合が増えてくるので、文章が多いほうが初めて理解するには、ありがたいですね。

難易度★★☆

 竹内淳著『高校数学でわかる統計学-本格的に理解するために』


かなり初めのころに買いました。題名の通り、高校数学で十分理解できるようにかみ砕かれた数式で統計学を学びます。不偏推定量や確率分布あたりの話がやっぱり最初は理解しにくいので、まず概念をつかみつつ、式との関連を学ぶ意味で役立ちます。入門書として最初の方に読んでみることをお勧めします。

難易度★☆☆

高橋信ら著『マンガでわかる統計学』


マンガでわかるシリーズの中でも高評価を受けているのがこちら。確率分布や相関係数などなど、出題範囲の ①~②における分野を学べます。これも買うなら最初のうちの導入としてオススメします。細かい式変形や証明はあまり出てこず、具体的な使用方法がメインです。

難易度★☆☆

高橋信ら著『マンガでわかる統計学 回帰分析編』


同じシリーズの回帰分析編です。これも回帰分析の導入にはうってつけ。表紙でみえるほど読者に媚びたマンガではありません(笑)

難易度★☆☆

三中信宏著『統計思考の世界~曼荼羅で読み解くデータ解析の基礎』


統計関連の読み物として。少し勉強してから統計の世界を俯瞰するのに役立ちます。式の少なめな読み物なので、「統計って何をどう考えているのか」ということを理解するのに良いです。ブートストラップ法の意味を理解するのにも分かりやすかったですし、赤池情報規準の証明の記事はこちらの本を参考にしました。検定に必須ではないですが、理解を深めるための1冊です。

難易度★★☆

久保拓弥著『データ解析のための統計モデリング入門』

一般線形モデルから一般化線形モデル(ロジスティック回帰など含む)にMCMC法とベイズ統計まで、データ解析する際のモデリングの方法をとても分かりやすく解説してくれている本です。Rのプログラムを例示しながら説明してくれていますが、別にRを使わなくても十分理解の助けになる一冊だと思います。簡単な具体例で理解しやすく、イメージとなる図や文章が充実しているので、モデリングについてある程度知識がついたけど、頭の整理ができていないときに読むには最適でした。
難易度★★☆

白砂堤津耶著『例題で学ぶ初歩からの統計学』


平均値、中央値、確率分布といった初歩の内容から基本的なZ検定やt検定の方法で母平均・母比率の検定を行うところまでカバーされている一冊です。相関分析、回帰分析も少し触れられています。説明は比較的丁寧でわかりやすいので、他の参考書で難しくて理解しにくいところを問題を解きながらやるには良いと思います。ただ、問題数や内容は比較的少なめな印象です。

難易度★☆☆

小寺平治著『明解演習 数理統計』


1986年初版という比較的古い教科書でありながら、今でも勧められているのを見かける一冊です。基本的な確率の話から始まり、標本分布、点推定、仮説検定(母平均・母比率・母分散)あたりまでカバーされています。実は統計検定の2ヶ月ほど前になんだか焦って買ったのですが、とてもわかりやすく、またポイントとなる点がうまく指摘されていたので、もっと早く買えばよかったと後悔しました笑

数学ではお馴染みのチャート式と同じような感じで、最初に簡単な内容の説明の後、例題・練習問題と進んでいきます。内容の説明がコンパクトで確率分布も全部ざっと見渡せますし、例題の補足が結構よく統計数理で問われるようなところを説明してくれているなど、統計検定の対策として十分使えそうです。後から見直すのに使ったので、最初にみたら印象が違うかもしれませんが、最初の1−2冊目として使っていくことをお勧めしたいです。

難易度★☆☆

<線形代数>

D.A.ハーヴィル著『統計のための行列代数 上』


タイトルとブログなどでのお勧めをみて買いましたが、内容が重たいです。 「統計のための」とありますが、基本的に統計学の話は出てこず、”統計に関連した”行列の式や性質などがぎっしり書いてあります。ただ、統計検定1級で出てくるレベルの行列であれば、他の本でも勉強しておけば対応できるのではないかという気がしないでもないです。行列の微分とかは他の本でなかなかみられないので、そのあたりをきちんと突き詰めるならアリかなという気はします。線形代数関連で最初に買う本としてはお勧めしません。

難易度★★★

D.A.ハーヴィル著『統計のための行列代数 下』


多変量を扱うときに大事な固有値、固有ベクトルの話は下巻の終わりで出てきます。上巻と同様にきっちりとした定義と証明をガツガツやっていく一冊です。

難易度★★★

石井俊全著『まずはこの一冊から 意味がわかる線形代数』


線形代数関連では個人的に超おすすめの一冊です。「線形空間」「線形写像」「線形変換」といった言葉や概念が数式の定義だけをみていても、何回読んでもさっぱり掴めなかったのですが、この本を読んで疑問が氷解しました。統計検定で出てくる2変数の変換におけるヤコビアンが特に意味が理解しにくく苦手でしたが、この本でその概念がようやくわかってきたように思います。また固有値、固有ベクトル、対角化あたりまでカバーされており、タイトル通り“この一冊から”始めるのが最適です。

難易度★☆☆

薩摩順吉ら著『キーポイント線形代数』


タイトルのとおり、キーポイントのみをまとめた比較的薄めの1冊です。クラメールの公式とか逆行列、行列式などその辺の基本事項を学ぶにはこれで十分です。高校・大学1年生時代にやったきりなので、もう忘れてますからね・・・。

難易度★★☆

竹内淳著『高校数学でわかる線形代数』


こちらも比較的やさしい線形代数の本です。対角化、固有値あたりまでの基本的な事項が図を用いながら説明されています。基本の確認用ですね。

難易度★☆☆

<ベイズ統計>

小島寛之著『完全独習 ベイズ統計学入門』


ベイズ統計学について0から学べる一冊。この本が特に良かったのはよくあるベイズ統計の初歩(検査の事前確率・事後確率といった陽性陰性2値の話)から連続的である確率分布に対してのベイズ法の適用まで書いてくれているところです。事前分布がベイズの法則を使って事後分布にどう変化していくのか、頑張って図解で説明してくれており、ようやく理解が進みました。他のもっと初歩的なベイズ統計の本ではそこまで説明してくれていなかったので、ありがたい限りでした。

難易度★☆☆

<統計応用・医薬生物学>

David Collett著『医薬統計のための生存時間データ解析』


カプランマイヤー推定値、カプランマイヤー曲線からログランク検定、Cox比例ハザード分析といったメジャーな生存時間解析の方法をデータセットや数式の説明つきでしっかり解説してくれている一冊です。翻訳書ですが、訳が読みづらいと思ったことはあまりありませんでした。過去に統計検定で出ている競合リスクやRMST法などは細かく載っていませんが基本を押さえるには十分だと思ってます。受験にあたっては前半部分しか読んでおりません。

難易度★★☆

村上秀俊著『ノンパラメトリック法(統計解析スタンダード)』


1標本のノンパラ法の検定である符号検定、ウィルコクソンの符号付き順位検定または2標本のウィルコクソン順位和検定、マンホイットニーのU検定の勉強に使いました。本当にそこしか読んでないのですが、説明・証明や例題はわかりやすいです。それ以外にも多標本検定や漸近相対効率の話なども載っていますがそこまでは読んでいません。説明はわかりやすいものの内容は高度なので、基本的な統計数理はよく抑えた上で読む必要がありそうです。

難易度★★★

丹後俊郎著『メタ・アナリシス入門』


メタ解析の方法論について数理的な背景から説明してくれています。『統計学のセンス』と同じ著者ですね。これも基本的な統計数理がわかっていないと理解が難しく、(検定が終わってから書いていますが)未だに数理的な理解はまだできていません。2021年の統計応用ではメタ解析の問題もあったので前半部分で解説されるような基本的な流れは知っておいても良いのかもしれません。

難易度★★★

永田靖著『サンプルサイズの決め方』

母平均・母分散の検定や1元配置分析におけるサンプルサイズ設計を数式できっちり説明してくれている一冊です。基本的な仮説検定・検出力の数理的な話は抑えた上で読む必要がありあます。式や説明はしっかりしてくれているので、内容を深めるにはもってこいだと思います。統計応用では過去問を見ても非心t分布などの分布はあまり問われていなかったので、おそらくやるにしても前半のごく一部で良いとは思われます。

難易度★★★

コメントを残す

メールアドレスが公開されることはありません。

CAPTCHA


日本語が含まれない投稿は無視されますのでご注意ください。(スパム対策)